CRAN/E | gainML

gainML

Machine Learning-Based Analysis of Potential Power Gain from Passive Device Installation on Wind Turbine Generators

Installation

About

Provides an effective machine learning-based tool that quantifies the gain of passive device installation on wind turbine generators. H. Hwangbo, Y. Ding, and D. Cabezon (2019) .

Copyright Copyright (c) 2019 Y. Ding, H. Hwangbo, Texas A&M University, D. Cabezon, and EDP Renewables

Key Metrics

Version 0.1.0
R ≥ 3.6.0
Published 2019-06-28 1364 days ago
Needs compilation? no
License GPL-3
CRAN checks gainML results

Downloads

Last 24 hours 0 -100%
Last 7 days 41 +21%
Last 30 days 140 -10%
Last 90 days 423 -18%
Last 365 days 2.059 -38%

Maintainer

Maintainer

Hoon Hwangbo

hhwangb1@utk.edu

Authors

Hoon Hwangbo

aut / cre

Yu Ding

aut

Daniel Cabezon

aut

Texas A&M University

cph

EDP Renewables

cph

Material

Reference manual
Package source

Vignettes

Implementation

macOS

r-release

arm64

r-oldrel

arm64

r-release

x86_64

r-oldrel

x86_64

Windows

r-devel

x86_64

r-release

x86_64

r-oldrel

x86_64

Depends

R ≥ 3.6.0

Imports

fields ≥ 9.0
FNN ≥ 1.1
utils
stats

Suggests

knitr
rmarkdown