CRAN/E | RprobitB

RprobitB

Bayesian Probit Choice Modeling

Installation

About

Bayes estimation of probit choice models, both in the cross-sectional and panel setting. The package can analyze binary, multivariate, ordered, and ranked choices, and places a special focus on modeling heterogeneity of choice behavior among deciders. The main functionality includes model fitting via Markov chain Monte Carlo methods, tools for convergence diagnostic, choice data simulation, in-sample and out-of-sample choice prediction, and model selection using information criteria and Bayes factors. The latent class model extension facilitates preference-based decider classification, where the number of latent classes can be inferred via the Dirichlet process or a weight-based updating scheme. This allows for flexible modeling of choice behavior without the need to impose structural constraints. For a reference on the method see Oelschlaeger and Bauer (2021) .

loelschlaeger.de/RprobitB/
Bug report File report

Key Metrics

Version 1.1.2
R ≥ 3.5.0
Published 2022-11-06 392 days ago
Needs compilation? yes
License GPL-3
CRAN checks RprobitB results

Downloads

Last 24 hours 4 -67%
Last 7 days 78 +11%
Last 30 days 306 -19%
Last 90 days 1.130 +9%
Last 365 days 3.850 +6%

Maintainer

Maintainer

Lennart Oelschläger

oelschlaeger.lennart@gmail.com

Authors

Lennart Oelschläger

aut / cre

Dietmar Bauer

aut

Sebastian Büscher

ctb

Manuel Batram

ctb

Material

README
NEWS
Reference manual
Package source

Vignettes

Introduction
Model definition
Choice data
Model fitting
Modeling heterogeneity
Choice prediction
Model selection

macOS

r-release

arm64

r-oldrel

arm64

r-release

x86_64

r-oldrel

x86_64

Windows

r-devel

x86_64

r-release

x86_64

r-oldrel

x86_64

Old Sources

RprobitB archive

Depends

R ≥ 3.5.0

Imports

Rcpp
mvtnorm
viridis
ggplot2
rlang
mixtools
doSNOW
foreach
progress
gridExtra
crayon
plotROC
MASS
cli

Suggests

knitr
rmarkdown
mlogit
testthat ≥ 3.0.0
covr

LinkingTo

Rcpp
RcppArmadillo