Installation
About
A framework for estimating ensembles of parametric survival models with different parametric families. The RoBSA framework uses Bayesian model-averaging to combine the competing parametric survival models into a model ensemble, weights the posterior parameter distributions based on posterior model probabilities and uses Bayes factors to test for the presence or absence of the individual predictors or preference for a parametric family (Bartoš, Aust & Haaf, 2022, doi:10.1186/s12874-022-01676-9). The user can define a wide range of informative priors for all parameters of interest. The package provides convenient functions for summary, visualizations, fit diagnostics, and prior distribution calibration.
Citation | RoBSA citation info |
fbartos.github.io/RoBSA/ | |
System requirements | JAGS >= 4.3.1 (https://mcmc-jags.sourceforge.io/) |
Bug report | File report |
Key Metrics
Downloads
Last 24 hours | 13 -24% |
Last 7 days | 41 -24% |
Last 30 days | 219 +19% |
Last 90 days | 590 -12% |
Last 365 days | 2.357 +132% |