HDShOP
High-Dimensional Shrinkage Optimal Portfolios
Constructs shrinkage estimators of high-dimensional mean-variance portfolios and performs high-dimensional tests on optimality of a given portfolio. The techniques developed in Bodnar et al. (2018 <doi:10.1016/j.ejor.2017.09.028>, 2019 <doi:10.1109/TSP.2019.2929964>, 2020 <doi:10.1109/TSP.2020.3037369>, 2021 <doi:10.1080/07350015.2021.2004897>) are central to the package. They provide simple and feasible estimators and tests for optimal portfolio weights, which are applicable for 'large p and large n' situations where p is the portfolio dimension (number of stocks) and n is the sample size. The package also includes tools for constructing portfolios based on shrinkage estimators of the mean vector and covariance matrix as well as a new Bayesian estimator for the Markowitz efficient frontier recently developed by Bauder et al. (2021) <doi:10.1080/14697688.2020.1748214>.
- Version0.1.7
- R versionR (≥ 3.5.0)
- LicenseGPL-3
- Needs compilation?No
- HDShOP citation info
- Last release11/14/2025
Documentation
Team
Dmitry Otryakhin
MaintainerShow author detailsSolomiia Dmytriv
Nestor Parolya
Yarema Okhrin
Taras Bodnar
Insights
Last 30 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN