CRAN/E | BayesMortalityPlus

BayesMortalityPlus

Bayesian Mortality Modelling

Installation

About

Fit Bayesian graduation mortality using the Heligman-Pollard model, as seen in Heligman, L., & Pollard, J. H. (1980) doi:10.1017/S0020268100040257 and Dellaportas, Petros, et al. (2001) doi:10.1111/1467-985X.00202, and dynamic linear model (Campagnoli, P., Petris, G., and Petrone, S. (2009) doi:10.1007/b135794_2). While Heligman-Pollard has parameters with a straightforward interpretation yielding some rich analysis, the dynamic linear model provides a very flexible adjustment of the mortality curves by controlling the discount factor value. Closing methods for both Heligman-Pollard and dynamic linear model were also implemented according to Dodd, Erengul, et al. (2018) . The Bayesian Lee-Carter model is also implemented to fit historical mortality tables time series to predict the mortality in the following years and to do improvement analysis, as seen in Lee, R. D., & Carter, L. R. (1992) doi:10.1080/01621459.1992.10475265 and Pedroza, C. (2006) doi:10.1093/biostatistics/kxj024.

Key Metrics

Version 0.1.1
R ≥ 3.5.0
Published 2023-09-06 20 days ago
Needs compilation? no
License GPL-3
CRAN checks BayesMortalityPlus results

Downloads

Last 24 hours 0 -100%
Last 7 days 60 -50%
Last 30 days 317 +38%
Last 90 days 766 +55%
Last 365 days 1.251

Maintainer

Maintainer

Luiz Fernando Figueiredo

labmapackage@gmail.com

Authors

Laboratorio de Matematica Aplicada

(IM/UFRJ)

Material

Reference manual
Package source

macOS

r-release

arm64

r-oldrel

arm64

r-release

x86_64

r-oldrel

x86_64

Windows

r-devel

x86_64

r-release

x86_64

r-oldrel

x86_64

Old Sources

BayesMortalityPlus archive

Depends

R ≥ 3.5.0
utils
ggplot2
magrittr
dplyr

Imports

MASS
progress
tidyr
scales