Installation
About
Implements parameter estimation using a Bayesian approach for Multivariate Threshold Autoregressive (MTAR) models with missing data using Markov Chain Monte Carlo methods. Performs the simulation of MTAR processes (mtarsim()), estimation of matrix parameters and the threshold values (mtarns()), identification of the autoregressive orders using Bayesian variable selection (mtarstr()), identification of the number of regimes using Metropolised Carlin and Chib (mtarnumreg()) and estimate missing data, coefficients and covariance matrices conditional on the autoregressive orders, the threshold values and the number of regimes (mtarmissing()). Calderon and Nieto (2017) doi:10.1080/03610926.2014.990758.
Key Metrics
Downloads
Last 24 hours | 0 -100% |
Last 7 days | 70 +19% |
Last 30 days | 273 +16% |
Last 90 days | 740 -13% |
Last 365 days | 3.319 -32% |