Installation
About
Bayes factors represent the ratio of probabilities assigned to data by competing scientific hypotheses. Drawbacks of Bayes factors are their dependence on prior specifications that define null and alternative hypotheses and difficulties encountered in their computation. To address these problems we define Bayes factor functions (BFF) directly from common test statistics. BFFs depend on a single non-centrality parameter that can be expressed as a function of standardized effect sizes, and plots of BFFs versus effect size provide informative summaries of hypothesis tests that can be easily aggregated across studies. Such summaries eliminate the need for arbitrary bright-line thresholds to determine “statistical significance.” BFFs are available in closed form and can be computed easily from z, t, chi^2, and F statistics.
Key Metrics
Downloads
Last 24 hours | 0 -100% |
Last 7 days | 81 +47% |
Last 30 days | 223 +12% |
Last 90 days | 656 -5% |
Last 365 days | 2.683 +1873% |