CRAN/E | SpatialDDLS

SpatialDDLS

Deconvolution of Spatial Transcriptomics Data Based on Neural Networks

Installation

About

Deconvolution of spatial transcriptomics data using deconvolution models based on deep neural networks and single-cell RNA-seq data. These models are able to make accurate estimates of the cell composition of spots in spatial transcriptomics datasets from the same context using the advances provided by deep learning and the meaningful information provided by single-cell RNA-Seq data. See Torroja and Sanchez-Cabo (2019) doi:10.3389/fgene.2019.00978 to get an overview of the method, but its application to spatial transcriptomics data will be available soon.

diegommcc.github.io/SpatialDDLS/
github.com/diegommcc/SpatialDDLS
System requirements Python (>= 2.7.0), TensorFlow (https://www.tensorflow.org/)
Bug report File report

Key Metrics

Version 0.1.0
R ≥ 4.0.0
Published 2023-05-07 207 days ago
Needs compilation? no
License GPL-3
CRAN checks SpatialDDLS results

Downloads

Last 24 hours 5 -29%
Last 7 days 19 -49%
Last 30 days 143 +20%
Last 90 days 375 0%
Last 365 days 931

Maintainer

Maintainer

Diego Mañanes

dmananesc@cnic.es

Authors

Diego Mañanes

aut / cre

Carlos Torroja

aut

Fatima Sanchez-Cabo

aut

Material

README
NEWS
Reference manual
Package source

Vignettes

Deconvolution of mouse lymph node samples

macOS

r-release

arm64

r-oldrel

arm64

r-release

x86_64

r-oldrel

x86_64

Windows

r-develnot available

x86_64

r-releasenot available

x86_64

r-oldrelnot available

x86_64

Depends

R ≥ 4.0.0

Imports

rlang
grr
Matrix
methods
tidyr
SpatialExperiment
SingleCellExperiment
SummarizedExperiment
zinbwave
stats
pbapply
S4Vectors
dplyr
tools
reshape2
gtools
reticulate
keras
tensorflow
ggplot2
ggpubr
RColorBrewer
grDevices

Suggests

knitr
rmarkdown
BiocParallel
rhdf5
DelayedArray
DelayedMatrixStats
HDF5Array
testthat