CRAN/E | gbm.auto

gbm.auto

Automated Boosted Regression Tree Modelling and Mapping Suite

Installation

About

Automates delta log-normal boosted regression tree abundance prediction. Loops through parameters provided (LR (learning rate), TC (tree complexity), BF (bag fraction)), chooses best, simplifies, & generates line, dot & bar plots, & outputs these & predictions & a report, makes predicted abundance maps, and Unrepresentativeness surfaces. Package core built around 'gbm' (gradient boosting machine) functions in 'dismo' (Hijmans, Phillips, Leathwick & Jane Elith, 2020 & ongoing), itself built around 'gbm' (Greenwell, Boehmke, Cunningham & Metcalfe, 2020 & ongoing, originally by Ridgeway). Indebted to Elith/Leathwick/Hastie 2008 'Working Guide' doi:10.1111/j.1365-2656.2008.01390.x; workflow follows Appendix S3. See for published guides and papers using this package.

Key Metrics

Version 1.5.0
R ≥ 3.5.0
Published 2021-10-01 537 days ago
Needs compilation? no
License MIT
License File
CRAN checks gbm.auto results
Language en-GB

Downloads

Last 24 hours 12 -64%
Last 7 days 68 +36%
Last 30 days 207 -3%
Last 90 days 570 -21%
Last 365 days 3.069 -35%

Maintainer

Maintainer

Simon Dedman

simondedman@gmail.com

Authors

Simon Dedman

aut / cre

Hans Gerritsen

aut

Material

README
NEWS
Reference manual
Package source

macOS

r-release

arm64

r-oldrel

arm64

r-release

x86_64

r-oldrel

x86_64

Windows

r-devel

x86_64

r-release

x86_64

r-oldrel

x86_64

Old Sources

gbm.auto archive

Depends

R ≥ 3.5.0

Imports

gbm ≥ 2.1.1
dismo ≥ 1.0-15
beepr ≥ 1.2
mapplots ≥ 1.5
maptools ≥ 0.9-1
rgdal ≥ 1.1-10
rgeos ≥0.3-19
raster ≥ 2.5-8
sf ≥ 0.9-7
shapefiles ≥ 0.7
stats ≥ 3.3.1