CRAN/E | DriveML

DriveML

Self-Drive Machine Learning Projects

Installation

About

Implementing some of the pillars of an automated machine learning pipeline such as (i) Automated data preparation, (ii) Feature engineering, (iii) Model building in classification context that includes techniques such as (a) Regularised regression [1], (b) Logistic regression [2], (c) Random Forest [3], (d) Decision tree [4] and (e) Extreme Gradient Boosting (xgboost) [5], and finally, (iv) Model explanation (using lift chart and partial dependency plots). Accomplishes the above tasks by running the function instead of writing lengthy R codes. Also provides some additional features such as generating missing at random (MAR) variables and automated exploratory data analysis. Moreover, function exports the model results with the required plots in an HTML vignette report format that follows the best practices of the industry and the academia. [1] Gonzales G B and De Saeger (2018) doi:10.1038/s41598-018-21851-7, [2] Sperandei S (2014) doi:10.11613/BM.2014.003, [3] Breiman L (2001) doi:10.1023/A:1010933404324, [4] Kingsford C and Salzberg S (2008) doi:10.1038/nbt0908-1011, [5] Chen Tianqi and Guestrin Carlos (2016) doi:10.1145/2939672.2939785.

Bug report File report

Key Metrics

Version 0.1.5
R ≥ 3.3.0
Published 2022-12-02 502 days ago
Needs compilation? no
License GPL-3
License File
CRAN checks DriveML results

Downloads

Yesterday 0
Last 7 days 10 -52%
Last 30 days 42 -33%
Last 90 days 216 +30%
Last 365 days 760 -80%

Maintainer

Maintainer

Dayanand Ubrangala

daya6489@gmail.com

Authors

Dayan
Ubrangala

aut / cre

Sayan Putatunda

aut / ctb

Kiran R

aut / ctb

Ravi Prasad Kondapalli

aut / ctb

Material

README
NEWS
Reference manual
Package source

Vignettes

Vignette Title Subtitle

macOS

r-release

arm64

r-oldrel

arm64

r-release

x86_64

r-oldrel

x86_64

Windows

r-devel

x86_64

r-release

x86_64

r-oldrel

x86_64

Old Sources

DriveML archive

Depends

R ≥ 3.3.0

Imports

sampling ≥ 2.8
rmarkdown
SmartEDA
data.table ≥1.10.4-3
caTools
ParamHelpers ≥ 1.12
mlr ≥ 2.15.0
ggplot2 ≥ 2.2.1
iml

Suggests

testthat
knitr
ranger
glmnet
randomForest
rpart
xgboost
stats
graphics
tidyr
MASS